Validation study of the acute biotic ligand model for silver.

نویسندگان

  • Gretchen K Bielmyer
  • Martin Grosell
  • Paul R Paquin
  • Rooni Mathews
  • Kuen B Wu
  • Robert C Santore
  • Kevin V Brix
چکیده

An important final step in development of an acute biotic ligand model for silver is to validate predictive capabilities of the biotic ligand model developed for fish and invertebrates. To accomplish this, eight natural waters, collected from across North America, were characterized with respect to ionic composition, pH, dissolved organic carbon, and sulfide. Tests were conducted with the cladoceran Ceriodaphnia dubia (48-h static) and the fish Pimephales promelas (96-h static renewal) to determine the concentrations causing lethality to 50% of the organisms (LC50s) for silver in each of these waters. Overall, the biotic ligand model adequately predicted silver toxicity to C. dubia; however, in some cases, predicted LC50 values exceeded measured values. The accuracy of the biotic ligand model predictions was less convincing for silver toxicity to P. promelas with pronounced problems in low-ionic strength waters. Another issue was the use of acclimated organisms in toxicity studies because the biotic ligand model has been developed with the use of a mix of studies with acclimated and nonacclimated test organisms of varying ages and sizes. To evaluate whether effects of acclimation to test waters influence biotic ligand model predictions, a subset of the natural waters were also tested with P. promelas that had been acclimated to the natural water for 7 d before testing. These experiments revealed no differences in toxicity between acclimated and nonacclimated P. promelas. To determine the influence of organism size, which has been previously correlated to Na(+) turnover and acute silver toxicity across multiple species, Na(+) and Cl(-) influx rates were measured in P. promelas of different sizes. Our results show that Na(+) and Cl(-) influx rates were inversely related to fish mass and positively correlated with silver sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals.

The mechanisms of acute copper and silver toxicity in freshwater organisms appear similar. Both result in inhibition of branchial sodium (and chloride) uptake initiating a cascade of effects leading to mortality. The inhibition of the branchial Na/K-ATPase in the basolateral membrane is generally accepted as the key component responsible for the reduced sodium uptake. We propose that branchial ...

متن کامل

A relationship between gill silver accumulation and acute silver toxicity in the freshwater rainbow trout: support for the acute silver biotic ligand model.

Rainbow trout were exposed to a range of silver concentrations (as AgNO3) in flowing synthetic soft water (0.05 mM Na+, 0.05 mM Cl-, 0.05 mM Ca2+, 0.02 mM Mg2+, 0.02 mM K+, pH 7.0, approximately 0.7 mg C/L dissolved organic carbon, 10 mg CaCO3/L, 10 +/- 2 degrees C) to investigate a possible relationship between short-term gill silver accumulation (3 h or 24 h) and acute silver toxicity (96-h m...

متن کامل

Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.

The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC)for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailabilit...

متن کامل

Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna.

The Biotic Ligand Model has been previously developed to explain and predict the effects of water chemistry on the toxicity of copper, silver, and cadmium. In this paper, we describe the development and application of a biotic ligand model for zinc (Zn BLM). The data used in the development of the Zn BLM includes acute zinc LC50 data for several aquatic organisms including rainbow trout, fathea...

متن کامل

Histopathological study on acute toxicity of nanochelating based silver nanoparticles in mouse model

For the therapeutic application and drug delivery of AgNPs in medicine, pharmacy and cosmeticproducts, it is essential to know the distribution and local or systemic toxicity associated with them.For this purpose, this study was carried out to assess the potential consequences of skin injection ofnanochelating based synthesized AgNPs on the mice models. Nanochelating technolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental toxicology and chemistry

دوره 26 10  شماره 

صفحات  -

تاریخ انتشار 2007